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a reevaluation of the role of the computer in instructional paradigms, and,
in turn, a reevaluation of the authoring aids needed to facilitate efficient
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The type of instructional system that we see emerging has specific
knowledge and problem-solving expertise that is used to aid students.
First, as a source of information, it can answer their questions, evaluate
their theories, and critique their solution paths. Second, as a tutorial
mechanism, it can form models of both the students’ states of knowledge
and their reasoning strategies. These structural models are used both to
identify fundamental misconceptions and to determine when and how to
provide remediation, heuristic recommendations (‘‘hints’"), or further
instruction.

In general, we are not focusing on techniques for teaching factual,
textbook knowledge. Computer-assisted instruction systems that do not
use the knowledge they contain (as a textbook does not use the knowledge
it contains) can competently handle this task and are inherently cheaper
for it. Instead, we are focusing on techniques for teaching procedural
knowledge and reasoning strategies that are learned when students must
use their factual knowledge in hands-on laboratory or problem-solving
tasks. While the students are getting a chance to exercise their knowl-
edge, the “‘intelligent’” instructional systems that we are considering here
attempt to mimic the capabilities of a laboratory instructor. The system
works on a one-to-one basis with students, carefully diagnosing what they
know, how they reason, and what kinds of deficiencies exist in their
ability to apply factual knowledge. The system then uses this inferred
knowledge of the students together with its knowledge of pedagogy to
determine how best to advance their learning.

Although we are still a long way from attaining this goal, we have
developed an organization for intelligent instructional systems (described
in Brown, 1977) that appears fruitful. Our methodology for developing
this organization (and the theory underlying it) has been to explore parts
of the overall organization in paradigmatic systems. A paradigmatic sys-
tem is an easily modified prototype system constructed over a carefully
chosen domain of knowledge. This methodology allows experimentation
with some aspect of the overall system by simplifying other aspects.
We have developed systems for such domains as electronic trouble-
shooting—SOPHIE (Brown, Burton, & Bell, 1975; Brown, Rubinstein, &
Burton, 1976); arithmetic drill and practice—WEST (Burton & Brown,
1976, 1978); elementary algebra (Brown, Burton, & Bell, 1975); and
procedural skills in arithmetic—BUGGY (Brown & Burton, 1978). In
addition, systems of similar spirit are being developed by Carr and Gold-
stein (1977).

One of the major stumbling blocks for an intelligent instructional sys-
tem is the lack of a natural means of communication between the student
and the computer. This chapter addresses the problems of using natural
language (English) as the communication language for advanced
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computer-based instructional systems. The instructional environment
places requirements on a natural-language understanding system that
exceed the capabilities of all existing systems. These requirements in-
clude (a) efficiency; (b) habitability; (c) tutorial capability; and (d) the
ability to exist with ambiguity. However, there are major leverage points
within the instructional environment that allow these requirements to be
met. In the remainder of this section, we will elaborate on these require-
ments.

A primary requirement for a natural-language processor, in an instruc-
tional situation, is efficiency. Imagine the following setting: The student is
at a terminal actively working on a problem. The student decides that
another piece of information is needed to advance the solution, so a query
is formulated. Having finished typing the question, the student will wait
for the system to give an answer before continuing to work on the
solution. During the time it takes the system to understand the query and
generate an answer, the student is apt to forget pertinent information and
lose interest. Psychological experiments have shown that response delays
longer than 2 seconds have serious effects on the performance of complex
tasks via terminals (Miller, 1968). In these 2 seconds the system must
understand the query; deduce, infer, look up, or calculate the answer; and
generate a response. Another adverse effect of poor response time is that
more of the student’s searching for the answer is done internally (i.e.,
without using the system). This decreases the amount of information the
tutoring system receives and increases the amount of induction that must
be performed, making the problem of figuring out what the student is
doing much harder (e.g., students will not ‘‘show their work™ when
solving a problem; they will just present the answer).

The second requirement for a natural-language processor is habitabil-
ity. Any natural-language system written in the foreseeable future is not
going to be able to understand all of natural language. What a good
natural-language interface must do is characterize and understand a us-
able subset of the language. Watt (1968) defines a ‘‘habitable™ sub-
language as ‘‘one in which its users can express themselves without
straying over the language boundaries into unallowed sentences [p. 338]."
Very intuitively, for a system to be habitable it must, among other things,
allow the user to make local or minor modifications to an accepted
sentence and get another accepted sentence. Exactly how much modifica-
tion constitutes a minor change has never been specified. Some examples
may provide more insight into this notion.

1. Is anything wrong?
2. Is there anything wrong?
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3. Is there something wrong?
4. Is there anything wrong with Section 3?
5. Does it look to you as if Section 3 could have a problem?

If a natural-language processor accepts Sentence 1, it should also accept
the modifications given in Sentences 2 and 3. Sentence 4 presents a minor
syntactic extension that may have major repercussions in the semantics
but that should also be accepted. Sentence 5 is an example of a possible
paraphrase of Sentence 4 that is beyond the intended notion of habitabil-
ity. Based on the acceptance of Sentences 1-4, the user has no reason to
expect that Sentence 5 will be handled.

Any sub-language that does not maintain a high degree of habitability is
apt to be worse than no natural-language capability at all because, in
addition to the problem one is seeking information about, the student is
faced, sporadically, with the problem of getting the system to understand
a query. This second problem can be disastrous both because it occurs
seemingly at random and because it is ill-defined.

In an informal experiment to test the habitability of a system, the
authors asked a group of four students to write down as many ways as
possible of asking a particular question. The original idea was to deter-
mine how many of the various paraphrasings would be accepted by the
prototype systems we were testing. The students each came up with one
phrasing very quickly but had tremendous difficulty thinking of any
others, even though three of the first phrasings were different! This
experience demonstrates the lack of the student’s ability to do ‘‘linguis-
tic'”” problem solving and points out the importance of accepting the
student’s first phrasing.

An equally important aspect of the habitability problem is multisen-
tence (or dialogue) phenomena. When students use a system that exhibits
“‘intelligence™ through its inference capabilities, they quickly start to
assume that the system must also be intelligent in its conversational
abilities as well. For example, they will frequently delete parts of their
statements that they feel are obvious, given the context of the preceding
statements. Often they are totally unaware of such deletions and show
surprise and/or anger when the system fails to utilize contextual informa-
tion as clearly as they (subconsciously) do. The use of context manifests
itself in the use of such linguistic phenomena as pronominalizations,
anaphoric deletions, and ellipses. The following sequence of questions
exemplifies these problems:

6. What is the population of Los Angeles?
7. What is it for San Francisco?
8. What about San Diego?
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The third requirement for a natural-language processor is that it be
self-tutoring (i.e., that it should teach the students about its capabilities).
As the students use the system, they should begin to feel the range and
limitations of the sub-language. When the students use a sentence that the
system cannot understand, they should receive feedback that will enable
them to determine why it cannot. There are at least two kinds of feedback.
The simplest (and most often seen) merely provides some indication of
what parts of the sentence caused the problem (e.g., unknown word or
phrase). A more useful kind of feedback goes on to provide a response
based on those parts of the sentence that did make sense and then indicate
(or give examples of) possibly related, acceptable sentences. It may even
be advantageous to have the system recognize common unacceptable
sentences and in response to them, explain why they are not in the
sub-language. (See the fifth section, on experiences with SOPHIE, for
further discussion of this point.)

The fourth requirement for a natural-language system is that it be aware
of ambiguity. Natural language gains a good deal of flexibility and power
by not forcing every meaning into a different surface structure. This
means that the program that interprets natural language sentences must be
aware that more than one interpretation is possible. For example, when
asked

9. Was John believed to have been shot by Fred?

one of the most potentially disastrous responses is ““Yes.”" The user may
not be sure whether Fred did the shooting or the believing or both. More
likely, the user, being unaware of any ambiguity, assumes an interpreta-
tion that may be different than the system's. If the system’s interpretation
is different, the user thinks he has received the answer to his query when
in fact he has received the answer to a completely independent query.
Either of the following is a much better response:

10. Yes, it is believed that Fred shot John.
11. Yes, Fred believes that John was shot.

The system need not necessarily have tremendous disambiguation skills,
but it must be aware that misinterpretations are possible and inform the
user of its interpretation. In those cases where the system makes a
mistake the results may be annoying but should not be catastrophic.
This chapter presents the development of a technique that we have
named semantic grammars for building natural-language processors that
satisfy the above requirements. The next section presents a dialogue from
the “*intelligent’” CAI system SOPHIE that we used to refine and demon-
strate this technique. This dialogue provides concrete examples of the
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kinds of linguistic capabilities that can be achieved using semantic gram-
mars. The third section describes semantic grammar as it first evolved in
SOPHIE, and points out how it allows semantic information to be used to
handle dialogue constructs and to allow the directed ignoring of words in
the input. The fourth section discusses the limitations that were encoun-
tered in the evolution of semantic grammars in SOPHIE as the range of
sentences was increased and how these might be overcome by using a
different formalism—augmented transition networks (ATN). This section
also reports on the conversion of the SOPHIE semantic grammar to an
ATN, and the extensions to the ATN formalism that were necessary to
maintain the solutions presented in the previous section. It also includes
comparison timings between the two versions of the natural-language
processor. The fifth section describes experiences we have had with
SOPHIE and presents techniques developed to handle problems in the
area of nonunderstood sentences. The sixth section suggests directions
for future work.

DIALOGUE FROM SOPHIE

Before delving into the structural aspects and technical details of the
semantic grammar technique, we would first like to provide a concrete
example of the dialogues it has supported. This section presents an
annotated dialogue of a student using the “‘Intelligent” CAI system
SOPHIE.? SOPHIE was developed to explore the use of artificial intelli-
gence techniques in providing tutorial feedback to students engaged in
problem-solving activities. The particular problem-solving activity that
SOPHIE is concerned with is the troubleshooting of a malfunctioning
piece of electronic equipment. SOPHIE models the piece of equipment
and answers the student’s requests for measurements and other informa-
tion to aid in debugging the equipment. More important, throughout the
problem-solving session, SOPHIE can evaluate the logical consistency of
a student’s hypothesis or generate hypotheses that are consistent with the
behavior the student has thus far observed.® In the dialogue, the student’s
typing is underlined. Even though the dialogue deals with electronic
jargon, the linguistic issues it exemplifies occur in all domains. The

? The dialogue is intended to demonstrate SOPHIE's linguistic capabilities and, though it
touches upon the major features of SOPHIE, it is not meant to exhibit the logical or
deductive capabilities of the system.

3 The reader is encouraged to see Brown and Burton (1975) for further examples and
descriptions of SOPHIE's tutorial and inferential capabilities.
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annotations (below the dialogue) attempt to point out these problems and
should be understandable to the non-electronics-oriented reader.

WELCOME TO SOPHIE—A SIMULATED ELECTRONICS LABORATORY.
The circuit (Figure 10.1) isbased on the Heathkit IP-28 power supply.
The IP-28 is a reasonably sophisticated power supply with both
current-limiting and voltage-limiting behavior. These two
interrelated feedback loops make troubleshooting this circuit
nontrivial.

=INSERT A FAULT
The Student tells SOPHIE to make one of the components in the circuit
bad. SOPHIE randomly selects a fault, inserts it into a model of the
instrument, and tells the student how the front panel controls are
presently set.

THE INSTRUMENT HAS A FAULT AND ITS PRESENT CONTROL SETTINGS ARE:

cc 1.0 CURRENT CONTROL—FROM .0 (MIN CURRENT) TO 1.0
CR HIGH CURRENT RANGE SWITCH, HIGH=1 AMP, LOW=.1 AMP
LOAD 1000 LOAD RESISTANCE IN OHMS

Ve 1.0 VOLTAGE CONTROL—FROM .0 (MIN VOLTAGE) TO 1.0
VR HIGH VOLTAGE RANGE SWITCH, HIGH=30, LOW=10 VOLTS

>WHAT IS THE OUTPT?
OUTPT = OUTPUT
THE QUTPUT VOLTAGE IS 1.2 VOLTS.
SOPHIE corrects the student's typing mistake.
Notice that the output was disambiguated as the output voltage.

IF YOU ARE NOT SURE WHETHER A VALUE IS CORRECT, YOU CAN ASK "T1S THAT VALUE
CORRECT?"
The systempoints out a feature that the student may not otherwise be
aware of. Correct here means what it is in a working instrument.

=15 THAT RIGHT?

IN A WORKING CIRCUIT THE OUTPUT VOLTAGE IS 30.1 VOLTS.

THAT VALUE IS INCORRECT.
SOPHIE permits reference to previous objects in the dialogue. Here,
That refers to the value of the previous measurement.

»>WHAT IS THE VOLTAGE BETWEEN THE CURRENT LIMITING TRANSISTOR

. . AND THE CONSTANT CURRENT SQURCE?

THE VOLTAGE AT N4 IS 2.48 VOLTS.
This is an example of some of the complexities that arise in even
limited domains. Although the syntax of the sentence is voltage
between x and y, it really means voltage at z with respect to ground
where z is the point between x and y. The output routines rephrase the
input in a simpler form (i.e., between x and y reduces to N4) so that
the user knows the system's interpretation and has an easier way of
referring to that location.

=WHAT IS IT BETWEEN THERE AND THE BASE OF Q67
THE VOLTAGE BETWEEN N4 AND NS IS 1.28 VOLTS.
Here it refers to the voltage and there refers toN4. Alsonotice that
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between has to be treated differently—that is, iwo nodes are
explicit now.

IS THERE ANY RIPPLE IN THE VOLTAGE AT THE BASE OF Q47

I'M SORRY, I DO NOT HANDLE AC CHARACTERISTICS.
SOPHIE recognizes that the student is moving into an area that it is
unable to handle. This is currently done by keyword recognition
{e.g., ripple) but pointsout a technique that shouldbe incorporated
in other aspects of the system as well.

=>WHAT IS THE BASE CURRENT OF Q37

THE BASE CURRENT OF Q3 IS 12 MICROAMPS.
The following collection of sentences demonstrates the conciseness
and flexibility of the dialogue mechanism. After introducing a
context ina complete sentence, the student can easily and naturally
ask related questions.

=>THRU THE EMITTER?

THE EMITTER CURRENT OF Q3 IS —.26 MILLIAMPS.
This type of sentence fragment, whichwewillrefertoasan ellipsis,
occurs frequently in dialogues. Rather than specifyinga complete
thought, an ellipsis gives only that piece of the thought that
contrasts an earlier thought. Notice that the referent cannot be
determined on syntactic grounds (as is possible with the ellipsis "the
emitter current"); yet this is the sort of statement a student might
make if the last answer had caused a slight shifting of his thinking.

>Q4

THE EMITTER CURRENT OF Q4 IS —.26 MILLIAMPS.
In this case, the student is changing his attention to a different
transistor. There isambiguity as towhether hewanted the base current,
the emitter current, or both. SOPHIE picks the most recent one and
gives its interpretation as a complete sentence.

>IF C2 WERE LEAKY, WHAT WOULD THE VOLTAGE ACROSS IT BE?
As this sentence shows, the referent to it can occur earlier in the
same sentence.

IS IT OKAY IF I USE 10000 FOR THE LEAKAGE RESISTANCE OF C2°7

> YES

IF THE LEAKAGE RESISTANCE OF C2 WERE 10000

UNDER THE PRESENT SETTINGS, THE VOLTAGE ACROSS C2 WOULD BE 26.3 VOLTS.
IN A WORKING CIRCUIT IT IS 28.9 VOLTS.

>TF Q6 HAS AN OPEN-EMITTER AND A SHORTED BAE COLLECTOR JUNCTION WHAT
HAPPENS TO THE VOLTAGE BETWEEN ITS BASE AND THE JUNCTION OF THE
VOLTGE LIMITING SECTION AND THE VOLTAGE REFERENCE SOURCE?
BAE = BASE
VOLTGE = VOLTAGE
Several examples of the use of conjunction. Imagine the student's
frustration if forced to type this query over because of spelling
mistakes.

UNDER THE SETTINGS:

CC=9, CR=LOW, LOAD=10, VC=1.0, VR=LOW.
THE VOLTAGE BETWEEN N5 AND N13 WOULD BE 8.94 VOLTS.
IN A WORKING CIRCUIT IT IS 9.57 VOLTS.
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=WHAT IS THE CURRENT THRU THE CC WHEN THE VC 1S SET TO 1.0¢

WITH THE VOLTAGE CONTROL NOW SET AT 1.0

THE CURRENT THRU THE CURRENT CONTROL IS 30 MILLIAMPS.
CCand VC are abbreviations. The controlsare also "parts" that canbe
used in measurements.

=WHAT IS IT WITH IT SET TO .87

WITH THE VOLTAGE CONTROL NOW SET AT .8

THE CURRENT THRU THE CURRENT CONTROL IS 24 MILLIAMPS.
Here the systemmust correctly instantiate two occurrencesof it. The
referent to the second it couldbe either CCorVC, since theseareboth
controls.

SEMANTIC GRAMMAR

Introduction

In the first section we described the requirements for a natural-language
processor in a learning environment. Briefly, they are efficiency and
friendliness over the class of sentences that arise in a dialogue situation.
The major leverage points we have that allow us to satisfy these require-
ments are (a) limited domain; (b) limited activities within that domain; and
(c) known conceptualizations of the domain. In other words, we know the
problem area, the type of problem the students are trying to solve, and the
way they should be thinking about the problem in order to solve it. What
we are then faced with is taking advantage of these constraints in order to
provide an effective communication channel.

Notice that all of these constraints relate to concepts underlying the
student’s activities. In SOPHIE, the concepts include voltage, current,
parts, transistors, terminals, faults, particular parts, hypotheses, controls,
settings of controls, and so on. The dependency relationships between
concepts include things such as these: Voltage can be measured at termi-
nals, parts can be faulted, and controls can be set. The student, in
formulating a query or statement, is requesting information or stating a
belief about one of these relationships (e.g., What is the voltage at the
collector of transistor Q5? or I think resistor R9 is open.)

It occurred to us that the best way to characterize the statements used
for this task was in terms of the concepts themselves as opposed to the
traditional syntactic structures. The language can be described by a set of
grammar rules that characterize, for each concept or relationship, all of
the ways of expressing it in terms of other constituent concepts. For
example, the concept of a measurement requires a quantity to be mea-
sured and something against which to measure it. A measurement is
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typically expressed by giving the quantity followed by a preposition,
followed by the thing that specifies where to measure (e.g., voltage across
capacitor C2, current thru diode DI). These phrasings are captured in
this grammar rule (this is not actually a rule from the grammar but is
merely intended to be  suggestive):

<MEASUREMENT> := <MEASURABLE/QUANTITY> <PREP> <PART>

The concept of a measurement can, in turn, be used as part of other
concepts—for example, to request a measurement (What is the voltage
across capacitor C2?) or to check a measurement (Is the current thru
divide DI correct?) We call this type of grammar a semantic grammar
because the relationships it tries to characterize are semantic and concep-
tual as well as syntactic.

Semantic grammars have two advantages over traditional syntactic
grammars. They allow semantic constraints to be used to make predic-
tions during the parsing process, and they provide a useful characteriza-
tion of those sentences that the system should try to handle. The predic-
tive aspect is important for four reasons:

1. It reduces the number of alternatives that must be checked at a given
time.

2. It reduces the amount of syntactic (grammatical) ambiguity.

3. It allows recognition of ellipsed or deleted phrases.

4. It permits the parser to skip words at controlled places in the input
(i.e., it enables a reasonable specification of control).

These points will be discussed in detail in a later section.
The characterization aspect is important for two reasons:

1. It provides a handle on the problem of constructing a habitable
sublanguage. The system knows how to deal with a particular set of
tasks over a particular set of objects. The sublanguage can be par-
titioned by tasks to accept all straightforward ways of expressing
those tasks, but does not need to worry about others.

2. It allows a reduction in the number of sentences that must be
accepted by the language while still maintaining habitability. There
may be syntactic constructs that are used frequently with one con-
cept (task) but seldom with another. For example, relative clauses
may be useful in explaining the reasons for performing an experi-
mental test but are an awkward (though possible) way of requesting
a measurement. By separating the processing along semantic
grounds, one may gain efficiency by not having to accept the awk-
ward phrasing.
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Representation of Meaning

Since natural-language communication is the transmission of concepts
via phrases, the ““meaning’’ of a phrase is its correspondent in the concep-
tual space. The entities in SOPHIE"s conceptual space are objects, rela-
tionships between objects, and procedures for dealing with objects. The
meaning of a phrase can be a simple data object (e.g., current limiting
transistor) or a complex data object (e.g., C5 open; Voltage at Node ).
The meaning of a question is a call to a procedure that knows how to
determine the answer. The meaning of a command is a call to a procedure
that performs the specified action. (Declarative statements are treated as
requests because the pragmatics of the situation imply that the student is
asking for verification of his statement. For example, I think C2 is shorted
is taken to be a request to have the hypothesis C2 is shorted critiqued.)
For example, the procedural specialist DOFAULT knows how to fault the
circuit and is used to represent the meaning of commands to fault the
circuit (e.g., Open R9; Suppose C2 shorts and R9 opens). The argument
that DOFAULT needs in order to perform its task is an instance of the
concept of faults that specifies the particular changes to be made (e.g., R9
being open). These same concepts of particular faults also serve as argu-
ments to two other specialists: HYPTEST, which determines the consis-
tency of a fault with respect to the present context (e.g., Could R9 be
open) and SEEFAULT, which checks the actual status of the circuit (e.g.,
Is R9 open?).

Result of the Parsing

Basing the grammar on conceptual entities allows the semantic in-
terpretation (the determination of the concept underlying a phrase) to
proceed in parallel with the parsing. Since each of the nonterminal
categories in the grammar is based on a semantic unit, each grammar rule
can specify the semantic description of a phrase that it recognizes in much
the same way that a syntactic grammar specifies a syntactic description.
The construction portion of the rules is procedural. Each rule has the
freedom to decide how the semantic descriptions, returned by the con-
stituent items of that rule, are to be put together to form the correct
““meaning.””

For example, the meaning of the phrase Q5 is the data base object Q5.
The meaning of the phrase the collector of Q5 is (COLLECTOR Q-5),
where COLLECTOR is a function that returns the data base item that is
the collector of the given transistor.

The rule for <MEASUREMENT> expresses all of the ways that the
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measurement
meas/quant node
voltage terminal
terminal/type part
collector Q5

Figure 10.2 Control structure for the <measurement> rule.

student can give a measurable quantity and also supply its required
arguments. The structure that results from <MEASUREMENT> is a
function call to the function MEASURE that supplies the quantity being
measured and other arguments specifying where to measure it. Thus the
meaning of the phrase the voltage at the collector of Q5 is (MEASURE
VOLTAGE (COLLECTOR Q5)), which was generated from the control
structure (see Figure 10.2).

The grammar rule for <MEASUREMENT> also accepts ‘‘meaning-
less’” phrases such as the power dissipation of Node 4. In addition, it
accepts some meaningful phrases such as the resistance between Node 3
and Node 14, which SOPHIE does not calculate. This results from
generalizing together concepts that are not treated identically in the sur-
face structure. In this case, voltage, current, resistance, and power dissi-
pation were generalized to the concept of a measurable quantity. The
advantage of allowing the grammar to accept more statements and having
the argument checking done by the procedural specialists is that the
semantic routines provide the feedback as to why a sentence cannot be
interpreted or ‘‘understood.”" It also keeps the grammar from being clut-
tered with special rules for blocking meaningless phrases. Carried to the
limit, the generalization strategy would return the grammar to being
‘‘syntactic’” again (e.g., all data objects are “‘noun phrases'’). The trick is
to leave semantics in the grammar when it is beneficial—to stop extrane-
ous parsings early, or to tighten the range of a referent for an ellipsis or
deletion. This is obviously a task-specific trade-off. (Bobrow and Brown
[1975] describe an interesting paradigm from which to consider this
trade-off.)

The relationship between a phrase and its meaning is usually
straightforward. However, it is not limited to simple embedding. Consider
the phrases the base emitter of Q5 shorted and the base of Q5 shorted to
the emitter. The thing which is *‘shorted’” in both of these phrases is the
“‘base emitter junction of Q5. The rule that recognizes both of these
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phrases, <PART/FAULT/SPEC>, can handle the first phrase by invok-
ing its constituent concepts of <JUNCTION> (base emitter of Q5) and
<FAULT/TYPE> (shorted) and combine their results. In the second
phrase, however, it must construct the proper junction from the separate
occurrences of the two terminals involved.

This discussion has been presented as if the concepts were defined a
priori by the capabilities of the system. Actually, for the system to remain
at all habitable, the concepts are discovered in the interplay between
expanding the corpus of sentences the system can handle and adding
capabilities to the system. When a particular English construct is difficult
to handle, it is probably an indication that the concept it is trying to
express has not been recognized properly by the system. In our example
the base of Q5 is shorted to the emitter, the relationship between the
phrase and its meaning is awkward because the present concept of short-
ing requires a part or a junction. The example is getting at a concept of
shorting, in which any two terminals can be shorted together (e.g., the
positive terminal of R9 is shorted to the anode of D6). This is a viable
conceptual view of shorting, but its implementation requires allowing
arbitrary changes in the topology of the circuit, which is beyond the
efficiency limitations of SOPHIE's simulator. Thus, the system we were
working with led us to define the concept in too limited a way.

Use of Semantic Information during Parsing
Prediction

Having described the notion of a semantic grammar, we will now
describe the ways in which it allows semantic information to be used in
the understanding process. One use of semantic grammars is to predict
the possible alternatives that must be checked at a given point. Consider,
for example, the phrase the voltage at xxx. After the word at is reached in
the top-down, left-to-right parse, the grammar rule corresponding to the
concept measurement can predict very specifically the conceptual nature
of xxx: It must be a phrase that directly or indirectly specifies a location in
the circuit. For example, xxx could be the junctions of the current limiting
section and the voltage reference source but cannot be 3 ohms.

Semantic grammars also have the effect of reducing the amount of
grammatical ambiguity. In the phrase the voltage at xxx, the prepositional
phrase at xxx will be associated with the noun voltage without considering
any alternative parses that associate it somewhere higher in the tree.

Predictive information is also used to aid in the determination of refer-
ents for pronouns. If the above phrase were the voltage at it, the gram-
mar would be able to restrict the class of possible referents to locations.
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By taking advantage of the available sentence contexts to predict the
semantic class of possible referents, the referent-determination process is
greatly simplified. For example:

la. Set the voltage control to .87
1b. What is the current thru R9?
1c. What is it with it set to .9?

In lc, the grammar is able to recognize that the first it refers to a
measurement that the student would like retaken under slightly different
conditions. The grammar can also decide that the second if refers to either
a potentiometer or to the load resistance (i.e., one of those things that can
be set). The referent for the first it is the measurement taken in 1b, the
current thru R9. The referent for the second it is the voltage control,
which is an instance of a potentiometer. The context mechanism that
selects the referents will be discussed later.

Simple Deletion

The semantic grammar is also used to recognize simple deletions. The
grammar rule for each conceptual entity knows the nature of that entity’s
constituent concepts. When a rule cannot find a constituent concept, it
can either

a. fail (if the missing concept is considered to be obligatory in the
surface structure representation) or,
b. hypothesize that a deletion has occurred and continue.

For example, the concept of a TERMINAL has as one of its realizations
the constituent concepts of a TERMINAL-TYPE and a PART. When its
grammar rule finds only the phrase the collector, it uses this information
to posit that a part has been deleted (i.e., TERMINAL-TYPE gets instan-
tiated to the collector but nothing gets instantiated to PART). The
natural-language processor then uses the dependencies between the con-
stituent concepts to determine that the deleted PART must be a TRAN-
SISTOR. The ‘‘meaning’” of this phrase is then the collector of some
transistor. Which transistor is determined when the meaning is evaluated
in the present dialogue context. In particular, the semantic form returned
is the function PREF and the classes of possible referents; in our example
the form would be (COLLECTOR (PREF (TRANSISTOR))).

Ellipsis

Another use of the semantic grammar allows the processor to recognize
elliptic utterances. These are utterances that do not express complete
thoughts—a completely specified question or command—but only give
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differences between the intended thought and an earlier one.* For exam-
ple, 2b, 2c, and 2d are elliptic utterances.

2a. What is the voltage at Node 5?

2b. Ar Node 1?

2¢c. And Node 2?

2d. What about between nodes 7 and 8?

Ellipses can begin with introductory phrases such as and in 2c or what
about in 2d; however this is not required, as can be seen in 2b. Part of the
ellipsis rule is given in Figure 10.3.

<ELLIPSIS> := [<ELLIPSIS/INTRODUCER>] <REQUEST/PIECE> !
[<ELLIPSIS/INTRODUCER>] if <PART/FAULT/SPEC>

<REQUEST/PIECE> := [<PREP>=] <NODE> !
[<PREP>] <PART> !
between <NODE> and <NODE> !
[<PREP>] <JUNCTION> !
etc.

Figure 10.3 Ellipsis rule.

The grammar rule identifies which concept or class of concepts is possible
from the context available in the elliptic utterance.

Though the parser is usually able to determine the intended concepts
from the context available in an elliptic utterance, this is not always the
case. Consider the following two sequences of statements.

3a. What is the voltage at Node 57
3b. 10?

4a. What is the output voliage if the load is 100?
4b. 10?

In 3b, 10 refers to Node 10, whereas in 4b it refers to a load of 10. The
problem this presents to the parser is that the concepts underlying these
two elliptic utterances have nothing in common except their surface
realizations. The parser, which operates from conceptual entities, does
not have a concept that includes both of these interpretations. One solu-
tion would be to have the parser find all parses (concepts) and then choose
between them on the basis of context. Unfortunately, this would mean
that time is wasted looking for more than one parse for the large percent-
age of sentences in which it is not necessary to do so. A better solution

4 The standard use of the word ellipsis refers to any deletion. Rather than invent a new
word, we shall use the restricted meaning here.
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would be to allow structure among the concepts, so that the parser would
recognize 10 as a member of the concept number. Then the routines that
find the referent would know that numbers can be either node numbers or
values. This type of recognition could profitably be performed by a
bottom-up approach to parsing. However, its advantages over the present
scheme are not enough to justify the expense incurred by a bottom-up
parse to find all possible well-formed constituents. At present, the parser
assumes one interpretation, and a message is printed to the student
indicating the assumed interpretation. If it is wrong, the student must
supply more context in his request. In fact, /0? is taken as a load
specification and if the student meant the node he would have to use at 10,
N10, or Node 10. Later we will discuss the mechanism that determines to
which complete thought an ellipsis refers.

Using Context to Determine Referents
Pronouns and Deletions

Once the parser has determined the existence and class (or set of
classes) of a pronoun or deleted object, the context mechanism is invoked
to determine the proper referent. This mechanism has a history of student
interactions during the current session that contains, for each interaction,
the parse (meaning) of the student’s statement and the response calcu-
lated by the system. This list provides the range of possible referents and
is searched in reverse order to find an object of the proper semantic class
(or one of the proper classes). To aid in the search, the context mecha-
nism knows how each of the procedural specialists appearing in a parse
uses its arguments. For example, the specialist MEASURE has a first
argument that must be a quantity and a second argument that must be a
part, a junction, a section, a terminal, or a node. Thus when the context
mechanism is looking for a referent that can be either a PART or a
JUNCTION, it will look at the second argument of a call to MEASURE
but not the first. Using the information about the specialists, the context
mechanism looks in the present parse and then in the next most recent
parse, etc., until an object from one of the specified classes is found.

The significance of using the specialist to filter the search instead of just
keeping a list of previously mentioned objects is that it avoids misinterpre-
tations due to object—concept ambiguity. As an example, consider the
following sequence from the sample dialogue in the previous section:

5. What is the current thru the CC when the VC is 1.0?
6. What is it when it is .87



290 Richard R. Burton and John Seely Brown

Sentence 5 will be recognized by the following rules from the semantic
grammar:

$1) <REQUEST> := <SIMPLE/REQUEST> when <SETTING/CHANGE>
$2) <SIMPLE/REQUEST> := what is <MEASUREMENT>

§3) <MEASUREMENT> := <MEAS/QUANT> <PREP> <PART>

$4) <SETTING/CHANGE> := <CONTROL> is <CONTROL/VALUE>
$5) <CONTROL> :=VC

with a resulting semantic form of:

(RESETCONTROL (STQ VC 1.0)
(MEASURE CURRENT CC) )

RESETCONTROL is a function whose first argument specifies a
change to one of the controls and whose second argument consists of a
form to be evaluated in the resulting instrument context. STQ is used to
change the setting of one of the controls. The first argument to MEA-
SURE gives the quantity to be measured. The second specifies where it is
to be measured. To recognize Sentence 6, the application of Rules $2 and
$5 are changed. There is an alternative rule for <SIMPLE/REQUEST>
that looks for those anaphora (i.e., that, it, and one) that refer to a
measurement. These phrases, such as it, that result, or the value, are
recognized by the nonterminal <MEASUREMENT/PRONOUN>. The
alternative to $2 that would be used to parse (6) is

<SIMPLE/REQUEST> := what is <MEASUREMENT/PRONOUN>.

The semantics of <MEASUREMENT/PRONOUN> indicate that an en-
tire measurement has been deleted. The alternative to Rule $5,

<CONTROL> :=it,

recognizes it as an acceptable way to specify a control. The resulting
semantic form for Sentence 6 is

(RESETCONTROL (STQ [PRE-F' ' (CONTROL)) .8)
(PREF ' (MEASUREMENT) ) )

The function PREF searches back through the context of previous seman-
tic forms to find the most recent mention of a member of one of the
classes. In the above example, it will find the control VC but not CC
because the character imposed on the arguments of MEASURE is that of
a “‘part,”” not a *‘control.”” The presently recognized classes for deletions
are PART, TRANSISTOR, FAULT, CONTROL, POT, SWITCH, DI-
ODE, MEASUREMENT, and QUANTITY. (The members of the classes
are derived from the semantic network associated with a circuit.)
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Referents for Ellipses

If the problem of pronoun resolution is looked upon as finding a previ-
ously mentioned object for a currently specified use, then the problem of
ellipsis can be thought of as finding a previously mentioned use for a
currently specified object. For example,

7. What is the base current of Q4?
8. In 05?

The given object is O3, and the earlier function is base current. For a
given elliptic phrase, the semantic grammar identifies the concept (or
class of concepts) involved. In 7, since QS is recognized by the nontermi-
nal <TRANSISTOR/SPEC=>, the class would be TRANSISTOR. The
context mechanism then searches for a specialist in a previous parse that
accepted the given class as an argument. When one is found, the new
phrase is placed in the proper argument position and the modified parse is
used as the meaning of the ellipsis.

Limitations to the Context Mechanism

The method of semantic classification (to determine reference) is very
efficient and works well over our domain. It definitely does not solve all
the problems of reference. Charniak (1972) has pointed out the substantial
problems of reference in a domain as seemingly simple as children’s
stories. One of his examples demonstrates how much world knowledge
may be required to determine a referent: “‘Janet and Penny went to the
store to get presents for Jack. Janet said ‘I will get Jack a top.” ‘Don’t
get Jack a top,’ said Penny. ‘He has a top. He will make you take it back
[p. 717

Charniak argues that to understand to which of the two tops “*it™" refers
requires knowing about presents, stores and what they will take back, etc.
Even in domains where it may be possible to capture all of the necessary
knowledge, classification may still lead to ambiguities. For example,
consider the following:

9. What is the voltage at Node 5 if the load is 1007
10. Node 6?
11. 7?

In Statement 11 the user means Node 7. In Statement 10, he has rein-
forced the use of ellipsis as referring to node number. (For example, when
Statement 10 is left out, Statement 11 is much more awkward.) On the
other hand, if Statement 11 had been 1000 or if Statement 10 had been 10?,
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things would be more problematic. When Statement 11 is 1000, we can
infer that the user means a load of 1000 because there is no Node 1000. If
Statement 10 had been 10?, there would be genuine ambiguity slightly
favoring the interpretation as a load because that was the last number
mentioned. The major limitation of the current technique, which must be
overcome in order to tackle significantly more complicated domains, is its
inability to return more than one possible referent. It considers each one
individually until it finds one that is satisfactory. The amount of work
involved in employing a technique that allows comparing referents has not
been justified by our experience.

Fuzziness

Having the grammar centered around semantic categories allows the
parser to be sloppy about the actual words it finds in the statement.
Having a concept in mind, and being willing to ignore words to find it, is
the essence of keyword parsing schemes. It is effective in those cases
where the words that have been skipped either are redundant or specify
gradations of an idea that are not distinguished by the system. For exam-
ple, in the sentence, Insert a very hard fault, very would be ignored; this is
effective because the system does not have any further structure over the
class of hard faults. In the sentence, What is the voltage across resistor
R8? resistor can be ignored because it is implied by R8. (The first of these
examples could be handled by making very a noise word (i.e., deleting it
from all sentences). Resistor, however, is not a noise word in all cases
(e.g., What is the current through the current sensing resistor?) and hence
cannot be deleted.

One advantage that a procedural encoding of the grammar (discussed
later) has over pattern-matching schemes in the implementation of fuzzi-
ness is its ability to control exactly where words can be ignored. This
provides the ability to blend pattern-matching parsing of those concepts
that are amenable to it with the structural parsing required by more
complex concepts. The amount of fuzziness—how many, if any, words in
a row can be ignored—is controlled in two ways. First, whenever a
grammar rule is invoked, the calling rule has the option of limiting the
number of words that can be skipped. Second, each rule can decide which
of its constituent pieces or words are required and how tightly controlled
the search for them should be. In SOPHIE; the normal mode of operation
of the parser is tight in the beginning of a sentence, but fuzzier after it has
made sense out of something.

Fuzziness has two other advantages worth mentioning briefly. It re-
duces the size of the dictionary because all known noise words do not
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have to be included. In those cases where the skipped words are meaning-
ful, the misunderstanding may provide some clues to the user that allow
him to restate his query.

Preprocessing

Before a statement is parsed, a preprocessor performs three operations.
The first expands abbreviations, deletes known noise words, and
canonicalizes similar words to a common form. The second is a cursory
spelling correction. The third is a reduction of compound words.

Spelling correction is attempted on any word of the input string that the
system does not recognize. The spelling correction algorithm?® takes the
possibly misspelled word and a list of correctly spelled words and deter-
mines which, if any, of the correct words is close to the misspelled word
(using a metric determined by number of transpositions, doubled letters,
dropped letters, etc.). During the initial preprocessing, the list of correct
words is very small (approximately a dozen) and is limited to very com-
monly misspelled words and/or words that are critical to the understand-
ing of a sentence. The list is kept small so that the time spent attempting
spelling correction, prior to attempting a parse, is kept to a minimum.
Remember that the parser has the ability to ignore words in the input
string, so we do not want to spend a lot of time correcting a word that will
not be needed in understanding the statement. But notice that certain
words can be critical to the correct understanding of a statement. For
example, suppose that the phrase the base emitter current of Q3 were
incorrectly typed as the bse emitter current of 03. If bse were not
recognized as being base, the parser would ignore it and misunderstand
the phrase as the emitter current of 03, a perfectly acceptable but much
different concept.® Because of this problem, words like base, which if
ignored have been found to lead to misunderstandings, are considered
critical, and their spelling is corrected before any parse is attempted.
Other words that are misspelled are not corrected until the second attempt
at spelling correction that is done after a statement fails to parse.

Compound words are single concepts that appear in the surface struc-
ture as a fixed series of more than one word. Their reduction is very
important to the efficient operation of the parser. For example, in the

5 The spelling correction routines are provided by INTERLISP and were developed by
Teitelman for use in the DWIM facility (Teitelman, 1969, 1974).

¢ To minimize the consequences of such misinterpretation, the system always responds
with an answer that indicates what question it is answering, rather than just giving the
numeric answer.
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question, What is the voltage range switch setting?, voltage range switch
is rewritten as the single item VR. If not rewritten, voltage would be
mistaken as the beginning of a measurement (as in What is the voltage at
N4?) and an attempt would have to be made to parse range switch setting
as a place to measure voltage. Of course, after this failed, the correct
parse could still be found, but reducing compound words helps to avoid
search. In addition, the reduction of compound words simplifies the
grammar rules by allowing them to work with larger conceptual units. In
this sense, the preprocessing can be viewed as a preliminary bottom-up
parse that recognizes local, multiword concepts.

Implementation

Once the dependencies between semantic concepts have been ex-
pressed in the Backus—-Naur Form (BNF), each rule in the grammar is
encoded (by hand) as a procedure in the programming language LISP.
This encoding process imparts to the grammar a top-down control struc-
ture, specifies the order of application of the various alternatives of each
rule, and defines the process of pattern matching each rule. The resulting
collection of LISP functions constitutes a goal-oriented parser in a fashion
similar to SHRDLU (Winograd, 1973), but without the backtracking abil-
ity of PROGRAMMER.

As has been argued elsewhere (Winograd, 1973; Woods, 1970), encod-
ing the grammars as procedures—including the notion of process in the
grammar—has advantages over using traditional phrase structure gram-
mar representations. Four of these advantages are

1. The ability to collapse common parts of a grammar rule while still
maintaining the perspicuity of the grammar

2. The ability to collapse similar rules by passing arguments (as with
SENDR)

3. The ease of interfacing other types of knowledge (in SOPHIE,
primarily the semantic network) into the parsing process

4. The ability to build and save arbitrary structures during the parsing
process. (This ability is sometimes provided by allowing augments
on phrase structure rules.)

In addition to the advantages it shares with other procedural repre-
sentations, the LISP encoding has the computational advantage of being
compilable directly into efficient machine code. The LISP implementation
is efficient because the notion of process it contains (one process doing
recursive descent) is close to that supported by physical machines,
whereas those of ATN and PROGRAMMER are nondeterministic and
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hence not directly translatable into present architecture. (See Burton
[1976] for a description of how it is possible to minimize this mismatch.)
In terms of efficiency, the LISP implementation of the semantic gram-
mar succeeds admirably. The grammar written in the INTERLISP dialect
of LISP (Teitelman, 1974) can be block-compiled. Using this technique,
the complete parser takes about SK of storage and parses a typical student
statement consisting of 8 to 12 words in around 150 milliseconds!

A NEW FORMALISM—SEMANTIC AUGMENTED
TRANSITION NETWORKS

Using the techniques described in the previous section, a natural-
language processor capable of supporting the dialogue presented in the
second section and requiring less than 200 milliseconds cpu time per
question was constructed. In addition, these same techniques were used
to build a processor for NLS-SCHOLAR (Grignetti, Gould, Hausmann,
Bell, Harris, & Passafiume, 1974; Grignetti, Hausmann, & Gould, 1975)
(built by K. Larkin), and an interface to an experimental laboratory for
exploring mathematics using attribute blocks (Brown & Burton, 1978). In
the construction of these varying systems, the notion of semantic gram-
mar proved to be useful. The LISP implementation, however, was found
to be a bit unwieldy. Although expressing the grammar as programs is
efficient and allows complete freedom to explore new extensions, the
technique is lacking in perspicuity. This lack of perspicuity has three
major drawbacks: (@) the difficulty encountered when trying to modify or
extend the grammar; (b) the problem of trying to communicate the extent
of the grammar to either a user or a colleague; (c) the problem of trying to
reimplement the grammar on a machine that does not support LISP.
These difficulties have been partially overcome by using a second, parallel
representation of the grammar in a specification language similar to the
Backus—Naur Form, which is the representation we have been presenting
throughout this report. This, however, requires supporting two different
representations of the same information and does not really solve prob-
lems a or c¢. The solution to this problem is a better formalism for
expressing and thinking about semantic grammars. This section discusses
such a formalism.

Augmented Transition Networks (ATN)

Some years ago, Chomsky (1957) introduced the notion that the pro-
cesses of language generation and language recognition could be viewed
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in terms of a machine. One of the simplest of such models is the finite state
machine. It starts off in its initial state looking at the first symbol, or word,
of its input sentence and then moves from state to state as it gobbles up
the remaining input symbols. The sentence is accepted if the machine '
stops in one of its final states after having processed the entire input
string; otherwise the sentence is rejected. A convenient way of represent-
ing a finite state machine is as a transition graph, in which the states
correspond to the nodes of the graph and the transitions between states
correspond to its arcs. Each arc is labeled with a symbol whose appear-
ance in the input can cause the given transition.

In an augmented transition network, the notion of a transition graph has
been modified in three ways: (a) the addition of a recursion mechanism
that allows the labels on the arcs to be nonterminal symbols that corre-
spond to networks; (b) the addition of arbitrary conditions on the arcs that
must be satisfied in order for an arc to be followed; (¢) the inclusion of a
set of structure-building actions on the arcs, together with a set of named
registers for holding partially built structures. (This discussion follows
closely a similar discussion in Woods [1970], to which the reader is
referred. A reader familiar with the augmented transition network for-
malism may wish to skip to the section ‘*Advantages to the Augmented
Transition Network Formalism.'") Figure 10.4 is a specification of a
language for representing augmented transition networks. The specifica-
tion is given in the form of an extended, context-free grammar in which
alternative ways of forming a constituent are represented on separate
lines and the symbol + is used to indicate arbitrarily repeatable con-
stituents. (+ is used to mean 0 or more occurrences. Though the accepted
usage of + is 1 or more, the accepted symbol for 0 or more, *, has not
been used to avoid confusion with the use of the symbol * in the aug-
mented transition network formalism.) The nonterminal symbols are low-
ercase English descriptions enclosed in angle brackets. All other symbols,
except +, are terminals. Nonterminals not given in Figure 10.4 have
names intended to be self-explanatory.

The first element of each arc is a word indicating the type of arc. For
arcs of type CAT, WRD, and PUSH, the arc type together with the
second element corresponds to the label on an arc of a state transition
graph. The third element is an additional test. A CAT (category) arc can be
followed if the current input symbol is a member of the lexical category
named on the arc and if the test on the arc is satisfied. A PUSH (network
call) arc causes a recursive invocation of a lower level network beginning
at the state indicated, if the test is satisfied. The WRD (word) arc can be
followed if the current input symbol is the word named on the arc and if
the test is satisfied. The TST (test) arc can be followed if the test is
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<transition network> := (<arc set><arc set>+)
<arc set> := (<state> <arc>+)
<arc> := (CAT <category name> <test> <action>+ <term act>)
(WRD <word> <test> <action>+ <term act>)
(PUSH <state> <test> <action>+ <term act>)
(TST <arbitrary label> <test> <action>+ <term act>)
(POP <form> <test>)
(VIR <constituent name> <test> <action>+ <term act>)
(JUMP <state><test><action>+)
<action> := (SETR <register> <form>)
(SENDR < register><form=>)
(LIFTR <register> <form>}
(HOLD <constituent name> <form>)
(SETF <feature> <form>)

<term act> := (TO <state>)
<form> :=(GETR <register>)
LEX

*

(GETF <form> <feature>)

(BUILDQ <fragment> <register>+)
(LIST <form>+)

(APPEND <form> <form>)

(QUOTE <arbitrary structure>)

Figure 10.4 A language for representing ATNs.

satisfied (the label is ignored). The VIR arc (virtual arc) can be followed if
a constituent of the named type has been placed on the hold list by a
previous HOLD action and the constituent satisfies the test. In all of these
arcs, the actions are structure-building actions, and the terminal action
specifies the state to which control is passed as a result of the transition.
After CAT, WRD, and TST arcs, the input is advanced; after VIR and
PUSH arcs it is not. The JUMP arc can be followed whenever its test is
satisfied, control being passed to the state specified in the second element
of the arc without advancing the input. The POP (return from network)
arc indicates the conditions under which the state is to be considered a
final state and the form of the constituent to be returned.

The actions, forms, and tests on an arc may be arbitrary functions of the
register contents. Figure 10.4 presents a useful set that illustrates major
features of the ATN. The first three actions specified in Figure 10.4 cause
the contents of the indicated register to be set to the value of the indicated
form. SETR (set register) causes this to be done at the current level of
computation, SENDR (send register) at the next lower level of embed-
ding, so that information can be sent down during a PUSH, and LIFTR
(lift register) at the next higher level of computation, so that additional
information can be returned to higher levels. The HOLD action places a
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form on the HOLD list to be used at a later place in the computation by a
VIR arc. SETF (set feature) provides a means of setting a feature of the
constituent being built.

GETR (get register value) is a function whose value is the contents of
the named register. LEX (lexical item) is a form whose value is the
current input symbol. The asterisk (*) is a form whose value depends on
the context of its use:

1. In the actions of a CAT arc, the value of * is the root form of the
current input word.

2. In the actions of a PUSH arc, it is the value of the lower computa-
tion.

3. In the actions following a VIR arc, the value of it is the constituent
removed from the HOLD list.

GETF is a function that determines the value of a specified feature of the
indicated form (which is usually *). BUILDQ is a general structure-
building form that places the values of the given registers into a specified
tree fragment. Specifically, it replaces each occurrence of + in the tree
fragment with the contents of one of the registers (the first register
replacing the first occurrence of +, the second register the second, etc.).
In addition, BUILDQ replaces occurrences of * by the value of the form
*_ The remaining three forms make a list out of the specified arguments
(LIST), append two lists together to make a single list (APPEND), and
produce as a value the (unevaluated) arbitrary form (QUOTE).

Advantages of ATN Formalism

The augmented transition network (ATN) formalism was seriously
considered at the beginning of the SOPHIE project but rejected as being
too slow. In the course of developing the LISP grammar, it became clear
that the primary reason for a significant difference in speed between an
ATN grammar and a LISP grammar is due to the fact that processing the
augmented transition network (ATN) is an interpreted process, whereas
LISP is compilable and therefore the time problem could be overcome by
building an ATN compiler. During the period of evolution of SOPHIE’s
grammar, an ATN compiler was constructed (see Burton, 1976). In the
next section we will discuss the advantages we hoped to gain by using the
ATN formalism.

These advantages fall into three general areas: (a) conciseness; (b)
conceptual effectiveness; and (c) available facilities. By conciseness we
mean that writing a grammar as an ATN takes fewer characters than
LISP. The ATN formalism gains conciseness by not requiring the speci-
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fication of details in the parsing process at the same level required in
LISP. Most of these differences stem from the fact that the ATN assumes
it has a machine whose operations are designed for parsing, whereas LISP
assumes it has a lambda calculus machine. For example, a lambda cal-
culus machine assumes a function has one value. A function call to look
for an occurrence at a nonterminal while parsing (in ATN formalism, a
PUSH) must return at least two values: the structure of the constituent
found, and the place in the input where the parsing stopped. A good deal
of complexity is added to the LISP rules in order to maintain the free
variable that has to be introduced to return the structure of the con-
stituent. Other examples of unnecessary details include the binding of
local variables and the specification of control structure as ANDs and
ORs.

The conciseness of the ATN results in a grammar that is easier to
change, easier to write and debug, and easier to understand, and hence
provide for better communication. We realize that conciseness does not
necessarily lead to these results (APL being a counter example in computer
languages, mathematics in general being another); however, this is not a
problem. The correspondence between the grammar rules in LISP and
ATN is very close. The concepts that were expressed as LISP code can
be expressed in nearly the same way as ATN but in fewer symbols.

The second area of improvement deals with conceptual effectiveness.
Loosely defined, conceptual effectiveness is the degree to which a lan-
guage encourages one to think about problems in the right way. One
example of conceptual effectiveness can be seen by considering the im-
plementation of case-structured rules. (See Bruce [1975] for a discussion
of case systems.) In a typical case-structure rule, the verb expresses the
function (or relation name) and the subject, and the object and preposi-
tional phrases express the arguments of the function or relation. Let us
assume for the purpose of this discussion that we are looking at four
different cases (agent, location, means, and time) of the verb GO—John
went to the store by car at 10 o’clock. In a phrase structure rule-oriented
formalism one would be encouraged to write:

<statement> :=<actor> <action/verb> <location> <means> <time>

Since the last three cases can appear in any order, one must also write five
other rules:

<statement> :=<actor> <action/verb> <location> <time> <means>

In an ATN one is inclined toward a graph (see Figure 10.5) that expresses
more clearly the case structure of the rule. There is no reason why in the
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PUSH locatlon

Figure 10.5 A case structure ATN rule.

LISP version of the grammar one could not write loops that are exactly
analogous to the ATN (the ATN compiler, after all, produces such code!).
However, a rule-oriented formalism does not encourage one to think this
way. An alternative rule implementation is
<action>:=<actor><action/verb><actionl>
<actionl>:=<actionl><time>

<actionl>:= <actionl><location>
<actionl>:= <actionl><means>

This is easier (shorter) to write but it has the disadvantage of being
left-recursive. To implement it, one is forced to write the LISP equivalent
of the augmented transition network that creates a difference between the
rule representation and the actual implementation. This method also has
the disadvantage of introducing the nonterminal <actionl> into the
grammar.

Another conceptual advantage of the ATN framework is that it encour-
ages the postponing of decisions about a sentence until a differential point
is reached, thereby allowing potentially different paths to stay together. In
the rule-oriented SOPHIE grammar there are top-level rules for <set>, a
command to change one of the control settings, and <modify>, a com-
mand to fault the instrument in some way. Sentence 1 is a <set> and
Sentence 2 is a <modify>.

1. Suppose the current control is high.
2. Suppose the current control is shorted.

The two parse paths for these sentences should be the same for the first
five words, but they are separated immediately by the rules <set> and
<modify>. An ATN encourages structuring the grammar so that the
decision between <set> and <modify> is postponed so that the paths
remain together. It could be argued that the fact that this example oc-
curred in SOPHIE's grammar is a complaint against top-down parsing or
semantic grammars, or just our particular instantiation of a semantic
grammar. We suspect the latter but argue that rule representations en-
courage this type of behavior.
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Another conceptual aid provided by ATNs is their method of handling
ambiguity. Our LISP implementation uses a recursive descent technique
(which can alternatively be viewed as allowing only one process). This
requires that any decision between two choices be made correctly be-
cause there is no way to try out the other choice after the decision is
made. At choice points, a rule can, of course, ‘‘look ahead™ and gain
information on which to base the decision, similar to the ‘‘wait-and-see™’
strategy used by Marcus (1975), but there is no way to back up and
remake a decision once it has returned.

The effects of this can be most easily seen by considering the lexical
aspects of the parsing. A prepass collapses compound words, expands
abbreviations, etc. This allows the grammar to be much simpler because it
can look for units like voltage—control instead of having to decode the
noun phrase voltage control. Unfortunately, without the ability to handle
ambiguity, this rewriting can be done only on words that have no other
possible meaning. So, for example, when the grammar is extended to
handle

3. Does the voltage control the current limiting section?

the compound voltage—control would have to be removed from the pre-
pass rules and included in the grammar. This reduces the amount of
bottom-up processing that can be done and results in a slower parse. It
also makes compound rules difficult to write because all possible uses of
the individual words must be considered to avoid errors. Another exam-
ple is the use of the letter *“C’* as an abbreviation. Depending on context,
it could possibly mean either current, collector, or capacitor. Without
allowing ambiguity in the input, it could not be allowed as an abbreviation
unless explicitly recognized by the grammar.

The third general area in which ATNs have an advantage is in the
available facilities to deal with complex linguistic phenomena. Though our
grammar has not yet expanded to the point of requiring any of the
facilities, the availability of such facilities cannot be ignored as an argu-
ment favoring one approach over another. A primary example is the
general mechanism for dealing with coordination in English described in
Woods (1973).

Conversion to Semantic ATN

For the reasons discussed above, the SOPHIE semantic grammar was
rewritten in the ATN formalism. We wish to stress here that the rewriting
was a process of changing form only. The content of the grammar re-
mained the same. Since a large part of the knowledge encoded by the
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grammar continues to be semantic in nature, we call the resulting gram-
mar a semantic ATN.

Figure 10.6 presents the graphic ATN representation of semantic
grammar nonterminal, which recognizes the straightforward way of ex-
pressing a terminal of a part in the circuit—the base of Q5, the anode of it,
the collector. It also shows a simple example of how the recognition of
anaphoric deletions can be captured in ATN formalism. By the state
TERMINAL/TYPE, both the determiner and the terminal type—base,
anode—have been found. The first arc that leaves TERMINAL/TYPE
accepts the preposition that begins the specification of the part. The
second arc (JUMP arc) corresponds to hypothesizing that the specifica-
tion of the part has been deleted, as in The base is open. The action on the
arc builds a place-holding form that identifies the deletion and specifies
(from information associated with the terminal type that was found) the
classes of objects that can fill the deletion. The method for determining
the referent of the deletion remains the same as described in the third
section.

The SOPHIE semantic ATN is compiled using the general ATN compil-
ing system described in Burton (1976). The SOPHIE grammar provides
the compiling system with a good contrast to the LUNAR grammar
(Woods, Kaplan & Nash-Webber, 1972) (that was used as a test during
development of the compiler), since it does not use many of the potential
features. In addition, a bench mark, of sorts, was available from the LISP
implementation of the grammar that could be used to determine the compu-
tational cost of using the ATN formalism.

There were two modifications made to the compiling system to improve
its efficiency for the SOPHIE application. In the SOPHIE grammar, a
large number of the arcs check for the occurrence of particular words.
When there is more than one arc leaving a state, the ATN formalism
requires that all of these arcs be tried, even if more than one of these is a
WRD (word) arc and an earlier WRD arc has succeeded. This is especially
costly, since the taking of an arc requires the creation of a configuration
(data structure) to try the remaining arcs. In those cases when the gram-
mar writer knows that none of the other arcs can succeed, this should be
avoided. As a solution to this problem, the GROUP arc type was added.
The GROUP arc allows a set of contiguous arcs to be designated as

Figure 10.6 A semantic ATN that recognizes deletion.
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mutually exclusive. The form of the GROUP arc is (GROUP arcl arc2
. . . arcn). The arcs are tried, one at a time, until the conditions on one of
the arcs are met. This arc is then taken, and the remaining arcs in the
GROUP are forgotten—not tried. If a PUSH arc is included in the
GROUP, it will be taken if its test is true, and the remaining arcs will not
be tried even if the PUSHed-for constituent is not found. For example,
consider the following grammar state:

(s/1
(GROUP (CAT AT (TO S/2))
(WRD X T (TO S/3))
(CATBT (TO S/4))))

At most, one of the three arcs will be followed. Without GROUPing them
together, it is possible that all three might be followed—if the word X had
interpretations as both Category A and Category B.

The GROUP arc also provides an efficient means of encoding optional
constituents. The normal method of allowing options in ATN is to provide
an arc that accepts the optional constituent and a second arc that jumps to
the next state without accepting anything. For example, if in State S/2 the
word very is optional, the following two arcs would be created:

(s/2
(WRD VERY T {TO REST-OF-S/2) )
(JUMP REST-OF-S/2 T) )

The inefficiency arises when the word very does occur. The first arc is
taken, but an alternative configuration that will try the second arc must be
created, and possibly later explored. When these arcs are embedded in a
GROUP, the alternative will not be created, thus saving time and space.
As a result, it will not have to be explored, possibly saving more time. A
warning should be included here that the GROUP arc can reject sentences
that might otherwise be accepted. In our example, very may be needed to
get out of the state REST-OF-S/2. In this respect, the GROUP arc is a
departure from the original ATN philosophy that arcs should be indepen-
dent. However, for some applications, the increased efficiency can be
critical.

The other change to the compiling system (for the semantic grammar
application) dealt with the preprocessing operations. The preprocessing
facilities described in the last section included (a) lexical analysis to
extract word endings; (b) a substitution mechanism to expand abbrevia-
tions, delete noise words, and canonicalize synonyms: (c) dictionary
retrieval routines; and (d) a compound word mechanism to collapse mul-
tiword phrases. For the SOPHIE application we added the ability to use
the INTERLISP spelling correction routines and the ability to derive
word definitions from SOPHIE’s semantic net. The extraction of def-
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initions from the semantic network for part names and node names
reduces the size of the dictionary and simplifies the operation of changing
circuits. In addition, a mechanism called MULTIPLES was developed
that permits string substitution within the input. This is similar to the
notion of compounding, but differs in that a compound rule creates an
alternative lexical item, whereas the multiple rule creates a different
lexical item. After the application of a compound rule, there is an addi-
tional edge in the input chart; after a multiple rule, the effect is the same as
if the user had typed in a different string.

Fuzziness

The one aspect of the LISP implementation that has not been incorpo-
rated into the ATN framework is fuzziness, the ability to ignore words in
the input. Although we have not worked out the details, the nondeter-
minism provided by ATNs lends itself to an interesting approach. In a
one-process—recursive descent—implementation, the rule that checks
for a word must decide (with information passed down from higher rules)
whether to try skipping a word, or give up. The critical information that is
not available when this decision has to be made is whether or not there is
another parse that would use that word. In the ATN, it is possible to
suspend a parse and come back to it after all other paths have been tried.
Fuzziness could be implemented so that rather than skip a word and
continue, it can skip a word and suspend, waiting for the other parses to
fail or suspend. The end effect may well be that sentences are allowed to
get fuzzier because there is no danger of missing the correct parse.

Comparison of Results

The original motivation for changing to the ATN was its perspicuity. As
Winograd (1973) has pointed out, simple grammars are perspicuous in
almost any formalism; complex grammars are still complex in any for-
malism. We found the ATN formalism much easier to think in, write in,
and debug. The examples of redundant processing that were presented
earlier in this section were discovered while converting to ATN. For a
gross comparison on conciseness, the ATN grammar requires 70% fewer
characters to express than the LISP version.

The efficiency results were surprising. Table 10.1 gives comparison
timings between the LISP version and the ATN compiled version. As can
be seen, the ATN version takes less than twice as much time. This was
pleasantly counterintuitive, since we expected the LISP version to be
much faster because of the amount of hand optimization that had been
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done while encoding the grammar rules. In presenting the comparison
timing, it should be mentioned that there are three differences between
the two systems that tended to favor the ATN version. (The exact extent
to which each of these differences contributed is difficult to gather statis-
tics on because of the INTERLISP block compiler that gains efficiency by
hiding internal workings. The exact contribution of each could certainly be
determined but was not deemed worth the effort.) One difference is the
lack of fuzziness in the ATN version. The LISP version spent time testing
words other than the current word, looking ahead to see whether it was
possible to skip this word, which was not done in the ATN version. The
second is the creation of categories for words during the preprocessing in
the ATN version that reduced the amount of time spent accessing the
semantic net and hence reduced the time required to perform a category
membership test in the ATN system. The third is the simplification of the
grammar and increase in the amount of bottom-up processing that could
be done because of the ambiguity allowed in the input chart. In our
estimation, the lack of fuzziness is the only difference that may have had a
significant effect, and this can be included explicitly in the ATN in places
where it is critical, by using TST arcs and suspend actions, without a
noticeable increase in processing time. In conclusion, we are very pleased
with the results of the compiled semntantic ATN and feel that the ATN
compiler makes the ATN formalism computationally efficient enough to
be used in real systems.

TABLE 10.1
Comparison of ATN versus LISP Implementation

Times (in seconds) are *‘prepass’™ + ‘‘parsing.”

1. What is the output voltage?
LISP — .024 + .018 = .042
ATN — .048 + .033 = .081
2. What is the voltage between there and the base of 067
LISP — .038 + .039 = .077
ATN — 090 + .046 = .136
3. 05?7
LISP — .010 + .046 = .056
ATN — .013 + .060 = .073
4, What is the output voltage when the voltage control is set to .57
LISP — .045 + .038 = .083
ATN — .096 + .048 = .144
5. If Q6 has an open emitter and a shorted base collector junction, what happens to
the voltage between its base and the junction of the voltage limiting section and the
voltage reference source?
LISP — .206 + .188 = .394
ATN — .259 + .090 = .349
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EXPERIENCES WITH SOPHIE AND
TECHNIQUES FOR HANDLING PROBLEMS

When we began developing a natural-language processor for an instruc-
tional environment, we knew it had to be (a) fast; (b) habitable; (c)
self-tutoring; and (d) able to deal with ambiguity. The basic conclusion
that has arisen from the work presented here is that it is possible to satisfy
these constraints. The notion of semantic grammar presented earlier
provides a paradigm for organizing the knowledge required in the under-
standing process that permits efficient parsing. In addition, semantic
grammar aids the habitability by providing insights into a useful class of
dialogue constructs, and permits efficient handling of such phenomena as
pronominalizations and ellipses. The need for a better formalism for
expressing semantic grammars led to the use of augmented transition
networks. The ability of the ATN-expressed semantic grammar to satisfy
the above stated requirements is demonstrated in the natural language
front-end for the SOPHIE system.

A point that needs to be stressed is that the SOPHIE system has been
(and is being) used by uninitiated students in experiments to determine the
pedagogical effectiveness of its environment. Although much has been
learned about the problems of using a natural-language interface, these
experiments were not debugging sessions for the natural-language com-
ponent. The natural-language component has unquestionably reached a
state at which it can be conveniently used to facilitate learning about
electronics. In this section, we will describe the experiences of students
using the natural-language component, and present some ideas on han-
dling erroneous inputs.

Impressions, Experiences, and Observations

As mentioned in the introduction, students are very unskilled at para-
phrasing their thoughts. This same inability to perform linguistic para-
phrase carried over to the actual interaction with SOPHIE via terminal.
Whenever the system did not accept a query, there was a marked delay -
before the student tried again. Sometimes the student would abandon a
line of questioning completely. At the same time, data collected over
many sessions indicated that there was no standard—canonical—way to
phrase a question. Table 10.2 provides some examples of the range of
phrasings used by students to ask for the voltage at a node. As Table
10.2 shows, students are likely to conceive of their questions in
many ways and to express each of these conceptions in any of several
phrasings. Yet other experiences indicate that they lack the ability to
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TABLE 10.2
Sample Student Inputs

The following are some of the input lines typed by students with the intent of
discovering the voltage at a node in the circuit.

What is the voltage at node 1?

What is the voltage at the base of Q5?
How much voltage at N10?

And what is the voltage at NI1?

N9?

V at the neg side of C67

VIl is?

What is the voltage from the base of transistor Q5 to ground?
What V at N16?

Coll. of Q57

Node 16 Voltage?

What is the voltage at Pin 1?

Qutput?

convert easily to another conceptualization or phrasing. Since the nonac-
ceptance of questions creates a major interruption in the student’s thought
process, the acceptance of many different paraphrases is critical to main-
taining flow in the student’s problem solving.

Another interesting phenomenon that occurred during sessions was the
change in the linguistic behavior of the students as they used the system.
Initially, queries were stated as complete English questions, generally
stated in templates created by the students from the written examples of
sessions that we had given them. If they needed to ask something that did
not exactly fit one of their templates, they would try a minor variant. As
they became more familiar with the mode of interaction, they began to use
abbreviations, to leave out parts of their questions, and, in general, to
assume that the system was following their interaction. After 5 hours of
experience with the system, almost all of one student’s queries contained
abbreviations and one in six depended on the context established by
previous statements.

Feedback—When the Grammar Fails

From our experiences with students using SOPHIE, we have been
impressed with the importance of providing feedback to unacceptable
inputs—doing something constructive when the system does not under-
stand an input. Though it may appear that in a completely habitable system
all inputs would be understood, no system has ever attained this goal, and
none will in the foreseeable future. To be natural to a naive user, an



308 Richard R. Burton and John Seely Brown

intelligent system should also act intelligently when it fails. The first step
toward having a system fail intelligently is the identification of possible
areas of error. In student’s use of the SOPHIE system, we have found the
following types of errors to be common:

1. Spelling errors and mistypings—Shortt the CE og Q3 and opwn its
base; What is the vbe Q57

2. Inadvertent omissions—What is the BE of Q5? (The user left out the
quantity to measure. Note that in other domains this is a well-formed
question.)

3. Slight misconceptions that are predictable—What is the output of
transistor Q3? (the output of a transistor is not defined); What is the
current thru Node 1? (nodes are places where voltage is measured
and may have numerous wires associated with them); What is R9?
(R9 is a resistor); Is Q5 conducting? (The laboratory section of
SOPHIE gives information that is directly available from a real lab
such as currents and voltages.)

4. Gross misconceptions whose underlying meaning is well beyond
designed system capabilities—Make the output voltage 30 volts;
Turn on the power supply and tell me how the unit functions; What
time is it?

In the remainder of this section, we will discuss the solutions used in the
SOPHIE system to provide feedback.

The use of a spelling correction algorithm (borrowed from INTER-
LISP) has proven to be a satisfactory solution to typos and misspellings.
During one student’s session, spelling correction was required on, and
resulted in proper understanding of, 10% of the questions. The major
failings of the INTERLISP algorithm are the restriction on the size of the
target set of correct words (time increases linearly with the number of
words) and its failure to correct run-on words. (The time required to
determine whether a word may be two—possibly misspelled—words run
together increases very quickly with the length of the word and the
number of possibly correct words. With no context to restrict the possible
list of words, the computation involved is prohibitive.) A potential solu-
tion to both shortcomings would be to use the context of the parser to
reduce the possibilities when it reaches the unknown word. Because of
the nature of the grammar, this would allow semantic context as well as
syntactic context to be used.

Of course, the use of any spelling correction procedure has some
dangers. A word that is spelled correctly but that the system does not
know may be changed through spelling correction to a word the system
does know. For example, if the system does not know the word fop but
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does know stop, a user's command to top everything can be disastrously
misunderstood. For this reason, words like stop are not spelling-
corrected.

Our solution to predictable misconceptions is to recognize them and
give error messages that are directed at correcting the misconception. We
are currently using two different methods of recognition. One is to loosen
up the grammar so that it accepts plausible but meaningless sentences.
This technique provides the procedural specialists called by the plausible
parse enough context to make relevant comments. For example, the
concept of current through a node is accepted by the grammar even
though it is meaningless. The specialist that performs measurements must
then check its arguments and provide feedback if necessary:

= WHAT IS THE CURRENT THRU NODE 479

The current thruanode is not meaningful since by Kirchoff'slaw the
sum of the currents thru any node is zero. Currents can be measured
thruparts (e.g., CURRENT THRU C6) or terminals (e.g., CURRENT THRU
THE COLLECTOR OF Q2) .

Notice that the response to the question presents some examples of how
to measure the currents along wires that lead into the mentioned node.
Examples of questions that will be accepted and are relevant to the
student’s needs are among the best possible feedback.

The second method of recognizing common misconceptions is to *‘key™’
feedback off single words or groups of words. In the following examples,
the keys are or and turned on. Notice that the response presents a general
characterization of the violated limitations as well as suggestions for
alternative lines of attack.

= COULD Q1 OR Q2 BE SHORTED?
I can handle only one question, hypothesis, etc. at a time. The fact
that you say OR indicates that you may be trying to express two
concepts in the same sentence. Maybe you can break your statement
into two or more simple ones.

> IS THE CURRENT LIMITING TRANSISTOR TURNED ON?

The laboratory section of SOPHIE is designed to provide the same
elementary measurements that would be available in a real lab. If
you want to determine the state of a transistor, measure the perti-
nent currents and voltages.

These methods of coping with errors have proved to be very helpful.
However, they require that all of the misconceptions be predicted and
programmed for in advance. This limitation makes them inapplicable to
novel situations.

The remaining severe problems a user has stem from omissions and
major misconceptions. After a simple omission, the user may not see that
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he has left anything out and may conclude that the system does not know
that concept or phrasing of that concept. For example, when the user types
What is the BE of Q5 instead of What is the VBE of Q57?, he may decide that
it is unacceptable because the system does not allow VBE as an abbrevia-
tion of base emitter voltage. For conceptual errors, the user may waste alot
of time and energy attempting several rephrasings of his query, none of
which can be understood because the system does not know the concept
the user is trying to express. For example, no matter how it is phrased, the
system will not understand Make the output voltage 30 volts because
measurements cannot be directly changed; only controls and specifications
of parts can be changed.

The feedback necessary to correct both of these classes of errors must
identify any concepts in the statement that are understood and suggest the
range of things that can be done to-with these concepts. This may help
the user see an omission or may suggest alternative conceptualizations
that get at the same information (for example, to change the output
voltage indirectly by changing one of the controls) or at least provide
enough information for the user to decide when to quit.

FUTURE DIRECTIONS

Further Research Areas

The SOPHIE semantic grammar system is designed for a particular
context—trouble-shooting—within a particular domain—electronics.
It represents the compilation of those pieces of knowledge that are general
(linguistic) together with specific domain-dependent knowledge. In its
present form, it is unclear which knowledge belongs to which area. The
development of semantic grammars for other applications and extensions
to the semantic grammar mechanism to include other understood linguis-
tic phenomena will clarify this distinction.

Although the work presented in this chapter has dealt mostly with one
area of application, the notion of semantic grammar as a method of
integrating knowledge into the parsing process has wider applicability.
Two alternative applications of the technique have been completed. One
deals with simple sentences in the domain of attribute blocks (Brown &
Burton, 1978). Though the sub-language accepted in the attribute-blocks
environment is very simple, it is noteworthy that within the semantic
grammar paradigm, a simple grammar was quickly developed that greatly
improved the flexibility of the input language. The other completed appli-
cation deals with questions about the editing system NLS (Grignetti et al.,
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1975). In this application, most questions dealt with editing commands
and their arguments, and fit nicely into the case-frame notion mentioned
in the fourth section. The case-frame use of semantic grammar is being
considered for, and may have its greatest impact on, command languages.
Command languages are typically case-centered around the command
name that requires additional arguments (its cases). The combination of
the semantic classification provided by the semantic grammar and the
representation of case rules permitted by ATNs should go a long way
toward reducing the rigidity of complex command languages such as
those required for message-processing systems. The combination should
also be a good representation for natural-language systems in domains
where it is possible to develop a strong underlying conceptual space, such
as management information systems (Malhotra, 1975).

Conclusions

In the course of this chapter, we have described the evolution of a
natural-language processor capable of using complex linguistic knowl-
edge. The guiding strand has been the utilization of semantic information
to produce efficient natural-language processors. There were several high-
lights that represent noteworthy points in the spectrum of useful natural
language systems. The procedural encoding technique with fuzziness
(third section) allows simple natural-language input to be accepted with-
out introducing the complexity of a new formalism. Encoding the rules as
procedures allows flexible control of the fuzziness, and the semantic
nature of the rules provides the correct places to take advantage of the
flexibility. As the language covered by the system becomes more com-
plex, the additional burden of a grammar formalism will more than pay for
itself in terms of ease of development and reduction in complexity. The
augmented transition network (ATN) compiling system allows for the
consideration of the ATN formalism by reducing its run-time cost, making
it comparable to a direct procedural encoding. The natural language front
end now used by SOPHIE is constructed by compiling a semantic ATN.
As the linguistic complexity of the language accepted by the system
increases, the need for more syntactic knowledge in the grammar be-
comes greater. Unfortunately, this often works at cross-purposes with the
semantic character of the grammar. It would be nice to have a general
grammar for English syntax that could be used to preprocess sentences;
however, one is not forthcoming. A general solution to the problem of
incorporating semantics with the current state of incomplete knowledge of
syntax remains an open research problem. In the foreseeable future, any
system will have to be an engineering trade-off between complexity and
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generality on one hand and efficiency and habitability on the other. We
have presented several techniques that are viable options in this trade-off.
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